Search: H673 Degenerative Myelopathy, DM/page/2/info-lgs@agrotis.it

Need a new search?

If you didn't find what you were looking for, try a new search!

Degenerativ Myelopati Exon 2 (DM Exon 2)

Canine degenerativ myelopati (DM) er en uhelbredelig progressiv neurodegenerativ sykdom i ryggmargen. Nevrodegenerative sykdommer kjennetegnes av progressivt tap av nevroner i sentralnervesystemet (CNS) som fører til funksjonsmangler. I tilfelle av DM er den berørte regionen ryggmargen, noe som resulterer i ataksi (tap av koordinering). DM ligner på mange måter amyotrofisk lateral sklerose (ALS) hos mennesker.

Denne varianten av sykdommen, noen ganger betegnet som SOD1B eller som Degenerative Myelopathy Exon 2, forekommer i mange forskjellige raser. Det er forårsaket av en recessiv mutasjon til genet SOD1. En beslektet variant som er spesifikk for Berner sennenhund har også blitt observert. Når du tester en Berner sennenhund for DM, er det viktig å teste for begge disse variantene, i motsetning til bare en.

Degenerativ myelopati Exon 1 (DM Exon 1) – Berner sennenhund

Canine Degenerative Myelopathy (DM) er en uhelbredelig progressiv neurodegenerativ sykdom i ryggmargen. Nevrodegenerative sykdommer kjennetegnes av progressivt tap av nevroner i sentralnervesystemet (CNS) som fører til funksjonsmangler. I tilfelle av DM er den berørte regionen ryggmargen, noe som resulterer i ataksi (tap av koordinering). DM ligner på mange måter amyotrofisk lateral sklerose (ALS) hos mennesker.

Denne varianten av sykdommen, kjent som SOD1A eller som Degenerative Myelopathy Exon 1, forekommer spesielt i Berner Sennenhund. Det er forårsaket av en recessiv mutasjon til genet SOD1med ufullstendig penetrans. En beslektet variant har blitt observert i et bredt spekter av raser. Når du tester en Berner sennenhund for DM, er det viktig å teste for begge disse variantene, i motsetning til bare en.

Degenerativ myelopati Exon 2 (DM Exon 2) (Eksternt patentlaboratorium)

Canine degenerativ myelopati (DM) er en uhelbredelig progressiv neurodegenerativ sykdom i ryggmargen. Nevrodegenerative sykdommer kjennetegnes av progressivt tap av nevroner i sentralnervesystemet (CNS) som fører til funksjonsmangler. I tilfelle av DM er den berørte regionen ryggmargen, noe som resulterer i ataksi (tap av koordinering). DM ligner på mange måter amyotrofisk lateral sklerose (ALS) hos mennesker.

Denne varianten av sykdommen, noen ganger betegnet som SOD1B eller som Degenerative Myelopathy Exon 2, forekommer i mange forskjellige raser. Det er forårsaket av en recessiv mutasjon til genet SOD1. En beslektet variant som er spesifikk for Berner sennenhund har også blitt observert. Når du tester en Berner sennenhund for DM, er det viktig å teste for begge disse variantene, i motsetning til bare en.

Degenerative Encephalopathy (DEN)

Degenerative Encephalopathy with Sleep Disorders and Caudate Necrosis or simply Degenerative Encephalopathy (DEN) is a neurological condition that affects the nervous system and leads to progressive degeneration or complete destruction of neurons in the brain, specifically in the region of the brain that is important in controlling movement and some aspects of behaviour.

This neurodegenerative disease has an autosomal recessive inheritance and is observed in the Nova Scotia Duck Tolling Retriever (NSDTR, Toller).

Personvernerklæring

Personvern

VHLGenetics tar personvern meget alvorlig; så vi behandler personopplysningene konfidensielt og er så aktpågivende som det er mulig. Våre retningslinjer for personvern dekker alle personlige data vi samler og bruker, inkludert kundeopplysninger du oppgir, men også informasjon om hvem som besøker nettstedet og abonnerer på våre nyhetsbrev.

VHLGenetics vil ikke bruke dine opplysninger med mindre du samtykker til at vi gjør dette, med mindre det er nødvendig for å kunne levere produkter eller tjenester, eller allerede har gjort dette. VHLGenetics selger ikke dine personopplysninger til noen tredjepart. VHLGenetics oppgir kun disse opplysningene til tredjeparter som er involvert i å utføre avtalen mellom VHLGenetics og deg, som databehandlere i våre nettbutikker og kommunikasjon mellom laboratorier i Nederland, Belgia og Tyskland, hvis dette er nødvendig for å utføre tester.

For å kunne tjene organisasjoner bedre, tilbyr vi våre DNA-tjenester under merkene CombiBreed®, CombiGen®, VHLGenetics® and SNPExpert. Du kan besøke deres nettsteder på www.combibreed.com, www.combigen.com, www snpexpert.com and www.vhlgenetics.com Vi bruker også noen ganger våre merkevarers lokale domenenavn, som combibreed.fr i Frankrike og combibreed.it i Italia. VHLGenetics kan ikke behandle denne informasjonen på annen måte uten ditt (uttrykkelige) samtykke.

VHLGenetics kontaktinformasjon er som følger:

  • Dr. Van Haeringen Laboratorium BV, Agro Business Park 100, NL-6708 PW Wageningen, Nederland
  • Van Haeringen Polygen bvba, Kasteellaan 7, BE-2390 Malle, Belgia
  • Certagen GmbH, Marie-Curie-Strasse 1, D-53359 Rheinbach, Tyskland
  • Agrotis S.r.l., Via Bergamo 292, 26100 Cremona, Italia
  • BioBank AS, Holsetgata 22, 2317 Hamar, Norge
  • CMSCH, Benešovská 123, 25209 Hradištko, Czech Republic
  • Feragen, Strubergasse 26, 5020 Salzburg, Østerrike
  • INNO, Rua Cândido de Sousa 15, 47110-503 Braga, Portugal
  • Laboratorios Labocor S.L., C/ ALAMILLO 41, 8770 – COLMENAR VIEJO MADRID, Spain
  • PharmaDNA, Demokratu 53, 48485 Kaunas, Lithuania
  • Progènes-AND, Gaspern Vian , 29640 Plougonven, Frankrike
  • Weatherbys Scientific, Irish Equine Centre Johnstown , Co. Kildare , Irland & Storbritannia
  • Zoolyx, Zonnestraat 3, 9300 Aalst, Belgia

Har du noen spørsmål, kan du ta kontakt med vår kundeservice på info@VHLGenetics.com. For å finne ut mer om de forskjellige varemerkene, kan du gå til www.dnaisourcore.com.

Politikk

  1. Hvis du bestiller hos oss, samler VHLGenetics dataene du angir, for eksempel navn, e-postadresse, hjemmeadresse og betalingsinformasjon, inkludert opplysninger om din bankkonto eller kredittkortopplysninger. Vi bruker kun informasjonen for å fakturere deg for bruk av våre tjenester, levering av disse og for å holde deg oppdatert på relevant utvikling.
  2. Hvis en tredjepart, som en bedrift eller veterinærklinikk, legger inn en bestilling og/eller betaler fakturaer som en del av en avtale mellom deg og denne tredjeparten, sender VHLGenetics de bestilte resultatene til tredjeparten.
  3. Hvis du bruker våre nettsteder, samles data automatisk av teknologiplattformer som gjør dette mulig. Din nettleser eller mobile enhet kan for eksempel dele visse data med VHLGenetics hvis enhetene kommuniserer med vår nettside.
  4. Vi bruker dine data til å informere deg elektronisk (via e-post, for eksempel) om spesialtilbud og kampanjer hos VHLGenetics og nye relevante produkter hos våre partnere, inntil du avregistrerer deg.
  5. Hvis du melder deg på vårt nyhetsbrev eller ber om informasjon, vil vi lagre ditt navn, adresse og e-postadresse og sende deg informasjon om våre kampanjer og/eller tilbud via e-post og/eller kontakte deg om tilbud og kampanjer.
  6. VHLGenetics selger ikke dine dataopplysninger videre. VHLGenetics vil ikke selge eller gi dine personlige dataopplysninger videre til tredjeparter, og vil bare gjøre disse dataene tilgjengelige til tredjeparter involvert i å levere tjenestene som er avtalt. Ansatte og tredjeparter som vi benytter, må respektere konfidensialiteten til dine dataopplysninger.
  7. Partnere. VHLGenetics bruker partnere for å administrere og lagre våre data. Disse partnerne kan være både i og utenfor EU. VHLGenetics velger partnere som kan beskytte personlige dataopplysninger tilstrekkelig, enten ved at de følger reglene til EU-US Privacy Shield, bindende bedriftsreglement eller signerer databehandleravtale. VHLGenetics inngår databehandleravtaler med alle våre samarbeidspartnere hvis dette er nødvendig.
  8. Lagring av dataopplysninger. VHL beholder skriftlige dokumenter fra kundene i fem år. Vi leverer skriftlige dokumenter tilbake til kunder på forespørsel, men vi kan ta kopier av disse. Vi vil destruere prøver og andre innsendte materialer straks vi har utført avtalen med kunden, med mindre vi tror det er behov for å oppbevare disse lenger enn dette. Vi vil fjerne dine personlige data på forespørsel, men husk at kopier av disse dataene kan være lagret som en del av sikkerhetskopiering.
  9. Sikkerhet. Det er også viktig å beskytte dine dataopplysninger. Hvis du oppgir din bankinformasjon for å samle abonnementet automatisk, sørger vi for at disse opplysningene er kryptert med SSL (Secure Socket Layer). Husk likevel at ingen sikkerhetstiltak vil være 100% sikkert, og at VHLGenetics ikke kan garantere dette. Vi har tatt organisatoriske og tekniske grep innen vår organisasjon, for å gjøre det sikkert å bruke dine dataopplysninger.
  10. Betalinger via nettbutikken. Hvis du angir kredittkortinformasjon eller annen bankinformasjon i vår nettbutikk, vær oppmerksom på at en ekstern betalingsformidler vil ta seg av din betaling.
  11. Endringer personvernerklæring. Retningslinjene for personvern kan bli oppdatert som følge av endringer i gjeldende lovgivning, eller endringer i vår virksomhet eller tjenestene vi tilbyr. Vi vil informere deg om eventuelle endringer via denne siden; så vi anbefaler at du leser personvernerklæringen regelmessig for å holde deg oppdatert. Gjør vi noen endringer som har en alvorlig konsekvens for deg, vil vi informere deg på e-post eller via våre tjenester.
  12. Rettighetene til dine personlige dataopplysninger. Du har rett til å trekke tilbake ditt samtykke til at vi bruker dine personopplysninger; og du kan også undersøke dine data for å korrigere eller fjerne disse, hvis dataene vi har lagret er feil eller på noen måte ulovlig.

Hvis det er noe du vil vite om VHLGenetics’ personvernerklæring, kan du kontakte oss via vår nettside via vår kontaktinformasjon ovenfor. Hvis du har noen klager på hvordan vi bruker dataene, og som vi ikke løst på en riktig måte, kan du klage til den nederlandske Data Protection Authority.

Arvelig nekrotiserende myelopati (HNM)

Hereditary Necrotising Myelopathy (HNM or ENM) is a degenerative neural disease. The disorder is found in the Dutch Kooiker (Kooikerhondje) and is caused by a recessive mutation to the gene IBA57.

Parentage Verification using microsatellites (STRS)

https://elastic-herschel.109-237-218-232.plesk.page/wp-content/uploads/2021/06/STR_yes.pnghttps://elastic-herschel.109-237-218-232.plesk.page/wp-content/uploads/2021/06/STR_no.png

Ethvert dyrs genetiske variasjon stammer fra begge foreldre. Halvparten av variasjonen er stammer fra far, mens den andre halvparten kommer fra moren.

Ved foreldretesting ser man vanligvis på 20 til 40 genetiske områder. I denne prosessen måles lengden av genetiske fragmenter. Den oppmålte lengden til de genetiske fragmentene i et avkom må samsvare med lengdene i mor og far. I to eksempler vises de grunnleggende prinsippene som brukes ved foreldreverifisering.

Figuren viser et eksempel der foreldrene stemmer. Her vises DNA fra tre hunder: et avkom (øvre linje), potensiell mor (midtre linje) og en potensiell far (nederste linje). På hver linje vises en genetisk markør. To DNA fragmenter vises som topper. Det første fragmentet fra avkommet kommer fra far (lengden på fragmentet er 150), mens det andre fragmentet kommer fra mor (lengden på fragmentet er 152). I dette eksempelet er begge avkommets fragmenter tilstede hos foreldrene og dette bekrefter at oppgitt mor og far er korrekt.

I det andre eksemplet vises en situasjon der foreldrene ikke stemmer. De tre linjene representerer avkom, potensiell mor og potensiell far. Igjen vises en DNA markør per linje, der to DNA fragmenter vises som topper. Det andre fragmentet fra avkommet er også hos mor (fragment lengde 152), mens det første fragmentet hos avkommet (fragment lengde 150) ikke er tilstede hos mulig far. I dette tilfellet er det ene fragmentet hos avkommet ikke tilstede hos noen av de potensielle foreldrene: det vil si at slektskapet ikke stemmer.

Når 20 til 40 ulike genetiske fragmenter sjekkes, blir sjansen for å ikke avdekke feil foreldre svært liten. De genetiske fragmentene som blir brukt til bekreftelse av riktige foreldre og identifisering av individet koder ikke for proteiner. Det vil si at de ikke kan gi noen informasjon om pels, utseende eller sykdommer.

Når lengden på en rekke DNA fragmenter er målt i en prøve, er en DNA-profil etablert. Dette mønsteret er unikt for en bestemt person, dyr eller plante. Ved tvilstilfeller kan DNA-profiler sammenlignes for å bekrefte eller avkrefte om DNAet kommer fra et individ.

CombiBreed Dobermann

This Combination Pack is designed to provide you with vital insights into your dog’s genetic health, traits and diversity and includes DNA tests for numerous important diseases and/or traits. In addition, we also calculate the Coefficient of Inbreeding (COI) and the percentage of Heterozygosity of your dog’s DNA. The COI shows the degree of inbreeding of your dog, whereas the Heterozygosity percentage is a measure of your dog’s individual genetic diversity.

Information about individual tests in this package is available in the section ‘Included Tests’ on this page. We accept samples from animals of any age. Normally, the turnaround time of tests performed at our own facilities is 10 working days after receipt of the sample. For outsourced tests, so-called “External lab”, or “External Patent lab”, the turnaround time is at least 20 working days after receipt of your sample. Please note that the mentioned 20 working days is an estimate, as the shipping time to these external laboratories or patent facilities may vary due to unexpected delays.

Some tests included are performed by an external laboratory. CombiBreed takes care of the mediation between you as a customer and the external laboratory. In these cases, CombiBreed cannot be held liable for the behaviour of the client and/or contractor.

CombiBreed schnauzer

This Combination Pack is designed to provide you with vital insights into your dog’s genetic health, traits and diversity and includes DNA tests for numerous important diseases and/or traits. In addition, we also calculate the Coefficient of Inbreeding (COI) and the percentage of Heterozygosity of your dog’s DNA. The COI shows the degree of inbreeding of your dog, whereas the Heterozygosity percentage is a measure of your dog’s individual genetic diversity.

Information about individual tests in this package is available in the section ‘Included Tests’ on this page. We accept samples from animals of any age. Normally, the turnaround time of tests performed at our own facilities is 10 working days after receipt of the sample. For outsourced tests, so-called “External lab”, or “External Patent lab”, the turnaround time is at least 20 working days after receipt of your sample. Please note that the mentioned 20 working days is an estimate, as the shipping time to these external laboratories or patent facilities may vary due to unexpected delays.

Some tests included are performed by an external laboratory. CombiBreed takes care of the mediation between you as a customer and the external laboratory. In these cases, CombiBreed cannot be held liable for the behaviour of the client and/or contractor.

CombiBreed Boerboel

This CombiBreed package is designed to provide you with vital insights into your Boerboel’s genetic health, traits and diversity and includes DNA tests for numerous important diseases and/or traits. In addition, we also calculate the Coefficient of Inbreeding (COI) and the percentage of Heterozygosity of your dog’s DNA. The COI shows the degree of inbreeding of your dog, whereas the Heterozygosity percentage is a measure of your dog’s individual genetic diversity.

Information about individual tests in this package is available in the section ‘Included Tests’ on this page. We accept samples from animals of any age. Normally, the turnaround time of tests performed at our own facilities is 10 working days after receipt of the sample. For outsourced tests, so-called “External lab”, or “External Patent lab”, the turnaround time is at least 20 working days after receipt of your sample. Please note that the mentioned 20 working days is an estimate, as the shipping time to these external laboratories or patent facilities may vary due to unexpected delays.

Some tests included are performed by an external laboratory. CombiBreed takes care of the mediation between you as a customer and the external laboratory. In these cases, CombiBreed cannot be held liable for the behaviour of the client and/or contractor.

CombiBreed German Pinscher

This CombiBreed package is designed to provide you with vital insights into your German Pinscher’s genetic health, traits and diversity and includes DNA tests for numerous important diseases and/or traits. In addition, we also calculate the Coefficient of Inbreeding (COI) and the percentage of Heterozygosity of your dog’s DNA. The COI shows the degree of inbreeding of your dog, whereas the Heterozygosity percentage is a measure of your dog’s individual genetic diversity.

Information about individual tests in this package is available in the section ‘Included Tests’ on this page. We accept samples from animals of any age. Normally, the turnaround time of tests performed at our own facilities is 10 working days after receipt of the sample. For outsourced tests, so-called “External lab”, or “External Patent lab”, the turnaround time is at least 20 working days after receipt of your sample. Please note that the mentioned 20 working days is an estimate, as the shipping time to these external laboratories or patent facilities may vary due to unexpected delays.

Some tests included are performed by an external laboratory. CombiBreed takes care of the mediation between you as a customer and the external laboratory. In these cases, CombiBreed cannot be held liable for the behaviour of the client and/or contractor.

CombiBreed Cardigan Welsh Corgi

This CombiBreed package is designed to provide you with vital insights into your Cardigan Welsh Corgi’s genetic health, traits and diversity and includes DNA tests for numerous important diseases and/or traits. In addition, we also calculate the Coefficient of Inbreeding (COI) and the percentage of Heterozygosity of your dog’s DNA. The COI shows the degree of inbreeding of your dog, whereas the Heterozygosity percentage is a measure of your dog’s individual genetic diversity.

Information about individual tests in this package is available in the section ‘Included Tests’ on this page. We accept samples from animals of any age. Normally, the turnaround time of tests performed at our own facilities is 10 working days after receipt of the sample. For outsourced tests, so-called “External lab”, or “External Patent lab”, the turnaround time is at least 20 working days after receipt of your sample. Please note that the mentioned 20 working days is an estimate, as the shipping time to these external laboratories or patent facilities may vary due to unexpected delays.

Some tests included are performed by an external laboratory. CombiBreed takes care of the mediation between you as a customer and the external laboratory. In these cases, CombiBreed cannot be held liable for the behaviour of the client and/or contractor.

CombiBreed Tsvetnaya Bolonka

This CombiBreed package is designed to provide you with vital insights into your Tsvetnaya Bolonka’s genetic health, traits and diversity and includes DNA tests for numerous important diseases and/or traits. In addition, we also calculate the Coefficient of Inbreeding (COI) and the percentage of Heterozygosity of your dog’s DNA. The COI shows the degree of inbreeding of your dog, whereas the Heterozygosity percentage is a measure of your dog’s individual genetic diversity.

Information about individual tests in this package is available in the section ‘Included Tests’ on this page. We accept samples from animals of any age. Normally, the turnaround time of tests performed at our own facilities is 10 working days after receipt of the sample. For outsourced tests, so-called “External lab”, or “External Patent lab”, the turnaround time is at least 20 working days after receipt of your sample. Please note that the mentioned 20 working days is an estimate, as the shipping time to these external laboratories or patent facilities may vary due to unexpected delays.

Some tests included are performed by an external laboratory. CombiBreed takes care of the mediation between you as a customer and the external laboratory. In these cases, CombiBreed cannot be held liable for the behaviour of the client and/or contractor.

Hereditary Ataxia (SCA) – Australian Shepherd

Progressive Degenerative Myeloencephalopathy is a form of hereditary ataxia, sometimes referred to as spinocerebellar ataxia (SCA). This severe neurological disorder leads to a loss of coordination, muscle weakness, and sensory impairments. It is caused by a recessive mutation in the PNPLA8 gene. As the disease progresses, affected dogs may experience a significantly diminished quality of life, often leading to euthanasia. This variant specifically affects Australian Shepherds.

Neuronal Ceroid Lipofuscinosis 2 (NCL2) – Dachshund

Neuronal Ceroid Lipofuscinosis (NCL) is the name for a wide array of degenerative neurological conditions which cause progressive nerve damage, resulting in a loss of mobility and vision, and ultimately death. The variant analysed in this test, Neuronal Ceroid Lipofuscinosis 2 (NCL2), is caused by a recessive mutation to the gene TPP1. It is found in the Dachshund.

Cerebellar Degeneration-Myositis Complex (CDMC) – NSDTR

Cerebellar Degeneration-Myositis Complex (CDMC) is a severe, degenerative neuromuscular disorder that causes muscle weakness, atrophy and ultimately death. It is caused by a recessive mutation to the gene SLC25A12. The variant of the disease analysed in this test is found in the Nova Scotia Duck Tolling Retriever, particularly in the European population. A closely-related variant is also found in the Dutch Shepherd.

Introduction to Genetics

History

Since the 19th century experiments have been conducted on the heredity of various organisms. The heredity was determined by observations of organisms – that the next generation gets one copy from each factor from each parent, and subsequently passing the factor on to following generations (Durmaz et al., 2015). The factors include for example colour, height, or shape of the organism. Pioneers Gregor Mendel and Augustinian Friar were scientist studying genetics scientifically. Gregor Mendel performed breeding experiments with hybridizing pea plants, in which different traits were traced. The traits included colour of the plants and round or wrinkled peas. The pioneer, after reporting the first breeding experiments, died in 1884. Little did he know that he would end up in biology textbooks.

Astounding results were observed by Mendel, the scientist saw traits were independently transmitted from each other (Dijk, Weissing, & Ellis, 2018). The independent transmission of traits is based on the position of genes on the corresponding chromosome. The progeny receives half of the chromosomes of both parents. If the gene is positioned on a chromosome – which is not passed down the lineage – the progeny does not express the gene. Therefore, if an experiment is conducted on various traits encoded by the corresponding genes. The progeny expresses different variation of traits in contrast to the parents.

Although, Mendel started the experiments on heredity of organisms. The scientist did not introduce the words “genetics” or “gene”. Later in the 20th, the scientific community century begun to focus on more breeding related experiments, and thereby referring to the results indicated by Mendel. The heredity of organisms would be called “genetics” and the factor that expresses the trait of a species was described as “gene” (Portin, Wilkins, 2017). It was the start of a new discipline in the scientific community.

Introduction to genetics

The introduction of the study genetics leaded to genetic research on a more molecular level. The molecular level experiments were more focussed on the structure and biosynthetic pathways that are needed to express a certain trait. In the first stages of genetic research on various structures and biosynthetic pathways, scientists suggested corresponding proteins were responsible for the induction of the perceived traits. However, following-up research leaded to the – todays well known double helix structured DNA – to be the encoding factor that expresses the perceiving trait.

Nowadays, DNA structures, which have the typical double helix structure, are seen everywhere. Genetic research elucidated more specification on the structure of the DNA strand and stated DNA was an information molecule (Travers & Muskhelishvili, 2015). The DNA strands are made up of so called “nucleic acids”, which are based on four nucleotides adenine (A), thymine (T), cytosine (C) and guanine (G). Groups of nucleic acids, three nucleotides, encode for the amino acids and amino acids are consecutive the basis of entire chromones. As it has been highlighted in modern society are the Homo Sapiens exist of 46 chromosomes. The chromosomes are the building blocks of the human genome.

Mutations and phenotypes

Progressive research broadened the insights on the DNA structures of various species. The DNA structure consists of information molecules, which encode for structural or active biosynthetic systems were the organisms are made up on. Genetic research has indicated changes on the prescribed encoded DNA strand. The changes are called mutations. Mutations are alterations in the DNA strand. The mutations can change a trait such as eye colour, skin colour or height. These traits are all observative characteristics that can be seen by the eye, also called phenotypes. Therefore, when a gene is mutated, the phenotype also changes. Besides, there are non-observative characteristics, which are alternation of the gene that are not visible by the human eye. Mutation for example organ failures, diabetes, or heart defects.

Mutations are commonly experienced as something that should not occur. However, there are multiple outcomes at alternations of DNA, the mutation did not express in a coding region, and therefore no phenotypical changes are witnessed. The alternation has taken place in an active coding region, and subsequently effecting the phenotype of an organism. These are the most common interpretations of DNA alternations.

Implementations of DNA alternations

Implementations of DNA mutations is commonly used in modern society. DNA mutation can be used as genetic markers for the identification of genetic variation, hereditary carriers and dominant inherent. Genetic variation in animals is experienced in everyday life, since every animal has a unique genotype that encodes for a unique phenotype that can be seen. Heredity carriers are more scientifically substantiated as where in the phenotype is not visible by the human eye. In general, the terms recessive and dominant are mostly used. Recessive means the organism has inherited the recessive allele (certain region of DNA) and dominant indicates the organisms has inherited the dominant allele.

The Hereditary carrier

The hereditary carrier is an organism which has inherited a recessive allele for a specific trait, but generally does not express the trait. Although the trait is not expressed by the organism, the organism is able to pass the allele on to the next generation. This way, a specific mutation can be present in multiple generations without noticing. Another possibility is in which the organisms have a dominant inherited allele. When an organism has a dominant and recessive allele for a specific allele, the dominant allele will be expressed. Nevertheless, if a hereditary carrier inherits a recessive allele for the specific trait it carries. This will result in the expression of the inhibited trait.

Punnet Square

The well-known Punnet Square identifies the percentual change of an organism to be homozygote dominant (AA), homozygote recessive (aa) or heterozygote (Aa) (Edwards, 2012). If both parents are carriers and heterozygote the outcome would be 25% homozygote, 25% homozygote and 50% heterozygote. Resulting an allele mutation on the dominate allele would lead to 75% expression on the next generation. However, if the allele mutation was on the recessive allele only 25% of the next generation would express the recessive allele. In addition, spontaneous alternations can also cause genetic variation on alleles, and therefore lead to unexpected results. As for example the Punnet square is used to determine the percentual chance of the lineages genotype. A spontaneous alternation can change a phenotype, for example the hair colour. The linage can have different phenotypes then the ancestors if the breeding continues with the mutation.

Karyotyping

Alleles are specific regions on the chromosome of an organism. The chromosome can be visualized using the technique karyotyping. During karyotyping all the chromosomes are coloured, and subsequently counted and examined using a microscope. Malfunctions in the chromosome assembly can be identified as irregularity of chromosomes or sometimes the number of chromosomes can be reduced or increased. Karyotyping is one of VHLGenetics genotyping techniques.

Business view

VHLGenetics DNA testing is performed at two laboratories. The head office is in Wageningen, the other laboratory is in Germany. DNA tests are performed under various accreditations, certifications, and memberships of organizations such as ICAR and IS. The main goal of VHLGenetics is to provide optimal DNA services for their customers. The core competence is the standardization of work processes in the laboratories. This while remaining flexibility in adding new tests and technologies to the portfolio. The DNA services have been developed from knowledge and experience gained in the last 30 years. DNA services are offered in a wide variety including plants and animals. The service involves mainly KASP, real-time PCR, capillary electrophoresis, and Thermo Fisher Scientific Targeted Genotyping by Sequencing®.

Congenital Hypomyelinating Polyneuropathy (HPN, 3 variants) – Golden Retriever

Congenital Hypomyelinating Polyneuropathy (HPN) is an inherited neurological disorder that primarily affects the peripheral nervous system. It is the canine variant of n Charcot-Marie-Tooth Neuropathy occurring in humans. It is characterized by abnormal development or insufficient formation of myelin sheet, which is a protective covering around nerve fibers. Myelin is essential for the proper transmission of nerve signals, and without it, nerve function is impaired.

In Golden Retrievers there are currently three mutations found in different genes that cause HPN. These are probably all inherited in an autosomal dominant way. The mutations that are tested for are found in the myelin protein zero (MPZ) gene, the myotubulin-related protein 2 (MTMR2) gene and the SH3 domain and tetratricopeptide repeats 2  gene (SH3TC2).

All three mutations (MTMR2, MPZ, SH3TC2) lead to similar symptoms: muscle weakness, ataxia, tremors, hypotonia (low muscle tone), and delayed motor development. The severity and progression of these symptoms can vary; MPZ mutations may lead to more severe muscle wasting or atrophy over time, while SH3TC2 and MTMR2 mutations tend to primarily cause weakness and coordination problems without significant muscle wasting.

The mutations can present early in life, often between 2 to 6 months of age. However, signs can sometimes be detected in younger puppies, particularly if the symptoms are more severe.

Neuronal Ceroid Lipofuscinosis 1 (NCL1) – Dachshund

Neuronal Ceroid Lipofuscinosis (NCL) is a wide array of degenerative neurological conditions which cause progressive nerve damage, resulting in a loss of mobility and vision, and ultimately death. The variant analysed in this test, Neuronal Ceroid Lipofuscinosis 1 (NCL1 or CLN1), is caused by a recessive mutation to the gene PPT1, and is found in the Dachshund. Another variant of CLN1 has also been found in the Cane Corso.

Neuronal Ceroid Lipofuscinosis 12 (NCL12) – Australian Cattle Dog

Neuronal ceroid lipofuscinose (NCL) er navnet som refererer til et bredt spekter av degenerative nevrologiske tilstander som forårsaker progressiv nerveskade, noe som resulterer i tap av mobilitet og syn, og til slutt død. Denne varianten, som forekommer i den australske storfehunden, er kjent som Neuronal Ceroid Lipofuscinosis 12 (NCL12), og er forårsaket av en recessiv mutasjon til genet ATP13A2. En beslektet variant forekommer også i Tibetansk Terrier.

Go to Top